All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximate recursive Bayesian estimation of state space model with uniform noise

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00492001" target="_blank" >RIV/67985556:_____/18:00492001 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.5220/0006933803880394" target="_blank" >http://dx.doi.org/10.5220/0006933803880394</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5220/0006933803880394" target="_blank" >10.5220/0006933803880394</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximate recursive Bayesian estimation of state space model with uniform noise

  • Original language description

    This paper proposes a recursive algorithm for the state estimation of a linear stochastic state space model. A model with discrete-time inputs, outputs and states is considered. The model matrices are supposed to be known. A noise of the involved model is described by a uniform distribution. The states are estimated using Bayesian approach. Without using an approximation, the complexity of the posterior probability density function (pdf) increases with time. The paper proposes an approximation of this complex pdf so that a feasible support of the posterior pdf is kept during the estimation. The state estimation consists of two stages, namely the time and data update including the mentioned approximation. The behaviour of the proposed algorithm is illustrated by simulations and compared with other methods.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/GA18-15970S" target="_blank" >GA18-15970S: Optimal Distributional Design for External Stochastic Knowledge Processing</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICINCO 2018 : Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics

  • ISBN

    978-989-758-321-6

  • ISSN

    2184-2809

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    388-394

  • Publisher name

    INSTICC, SCITEPRESS.

  • Place of publication

    Setubal

  • Event location

    Porto

  • Event date

    Jul 29, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article