Processing of large-scale laser spectroscopy data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F18%3APU130618" target="_blank" >RIV/00216305:26620/18:PU130618 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Processing of large-scale laser spectroscopy data
Original language description
State-of-the-art laser-ablation based spectroscopic instruments provide data sets with increasing size, number of objects (spectra) and variables (wavelengths). In this work we concentrate namely on the Optical Emission Spectroscopic techniques, such as Laser-Induced Breakdown Spectroscopy and Laser Ablation Inductively Plasma Optical Emission Spectroscopy. However, presented algorithms are applicable also to the Mass Spec techniques. Typically, the data set is overloaded with information, analytically relevant as well as redundant, e.g. originating from noise and background. Processing such multivariate data is, thus, a challenging task demanding sophisticated approaches. A use of advanced statistical algorithms, referred to as multivariate data analysis algorithms or chemometrics, is of great interest in the contemporary data processing. Most often Principal Component Analysis and Self-Organizing Maps are implemented. Our efforts tackled mainly the dimensionality reduction in both, objects and varia
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10406 - Analytical chemistry
Result continuities
Project
<a href="/en/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů