All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The role of different high energy ball milling conditions of molybdenum powder on the resulting particles size and morphology

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F19%3APU135728" target="_blank" >RIV/00216305:26620/19:PU135728 - isvavai.cz</a>

  • Result on the web

    <a href="https://metal2019.tanger.cz/files/uploads/02//METAL2019_Conference_Proceedings_Content.pdf" target="_blank" >https://metal2019.tanger.cz/files/uploads/02//METAL2019_Conference_Proceedings_Content.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The role of different high energy ball milling conditions of molybdenum powder on the resulting particles size and morphology

  • Original language description

    High energy ball milling is a powder processing method in which the powder particle size can be decreased to micrometer size in a relatively short period of time. This method is based on the friction and the high energy kinetic collisions between the balls and the trapped powder particles. The milling process is influenced by many process variables such as mainly the rotational speed, ball to powder weight ratio and processing time. In the present study, high energy ball milling process was performed for molybdenum powder using a high energy ball mill under different milling conditions varying the: (i) rotational speed from 600 to 800 rpm, (ii) ball to powder weight ratio of 100:3 and 100:6, (iii) milling time in the range of 10 to 60 minutes, (iv) process control agent using polyethylene glycol, and (v) milling atmosphere under air or nitrogen. The used initial molybdenum powder was of globular morphology and 100 µm in particle size. The powders after milling were characterized by a scanning electron microscope (SEM) and a laser diffraction size analysis. The particle size of milled powders was decreased down to 1.1 µm. As the most effective ball to powder weight ratio was found 100:6 with the milling speed of 800 rpm. The milling time played a crucial role for the refinement of particles up to 45 min, where the further milling had negligible effect on the overall trend of particle size evolution.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Metal 2019

  • ISBN

    978-80-87294-92-5

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1463-1469

  • Publisher name

    Tanger Ltd.

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    May 22, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000539487400239