All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Electrochemically driven multi-material 3D-printing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU136402" target="_blank" >RIV/00216305:26620/20:PU136402 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S235294071930650X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S235294071930650X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apmt.2019.100530" target="_blank" >10.1016/j.apmt.2019.100530</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Electrochemically driven multi-material 3D-printing

  • Original language description

    tMajor efforts for the advancement of additive manufacturing are lately focused on the development ofmulti-material 3D-printing (mMat-3DP) methods which can enable the fabrication of complete devicesin a single printing process combining materials with different properties (structural, functional, con-ductive, etc.). Printing conductive (metal and non-metal) materials with low-energy-consuming andeconomical methods is of particular interest since it would facilitate the production of electrodes, cat-alytic surfaces and electronic circuitry in general for countless applications. In order to contribute to thefuture vision of mMat-3DP, we wish to show here an economical method to selectively deposit differ-ent conductive materials (metal and conductive polymer) by means of electrochemical driving forces.A custom-made electrochemical liquid dispenser with embedded electrodes is used to electrodepositselectively a metal (Cu), a conductive polymer (polyaniline), or a combination of the two, with bothprecursors present simultaneously and conveniently in the common electrolytic bath. Combining the3D-patterning ability of a desktop 3D-printer with a concurrent control of the electrochemical process,selective deposition is demonstrated over a conductive graphite foil used as the cathode. Printing andelectrochemical parameters have been optimized using scanning electron microscopy and energy disper-sive X-ray spectroscopy to characterize the printed structures. The electrochemical 3D-printing method,being inherently low-cost, scalable and compatible with electrode fabrication methods shall find a broadscope of applications.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Materials Today

  • ISSN

    2352-9407

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    9

  • Pages from-to

    1-9

  • UT code for WoS article

    000530651300008

  • EID of the result in the Scopus database