All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Error measurement acuracy methodology

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F20%3APU145337" target="_blank" >RIV/00216305:26620/20:PU145337 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Error measurement acuracy methodology

  • Original language description

    New type of methods allows minimising the geometrical misalignments and they are called self-calibrating algorithms. This algorithm provides theoretically exact reconstruction when linked with the helical geometry, implying images without geometric distortion. CT systems applying such algorithms do not potentially need any additional calibration or even reference measurement. We propose a methodology of testing such a system with a self-calibrating algorithm and helical trajectory. Moreover, the length measurement error is evaluated on both spheres distance error and probing errors. Sphere distance errors are reaching 2/3 of the voxel size. Besides, we show the results for the length measurement error following the VDI/VDE 2630 guideline. The results show that the sphere distance errors has still a systematic error. This stems from the calibration being highly dependent on knowing the average voxel size with sufficient precision. The magnification is given by the self-calibration algorithm and it is associated with the detector pixel size. Therefore, the detector pixel size needs to be specified with precision down to 10 nm. This is below the manufacturing tolerance of the detector, and therefore it needs to be measured for each detector separately. In this paper, we provide a statistical method for obtaining this calibration. With this calibration, we achieve an SD error of ± (18.63 + 2.5L/100), when imaging with a voxel size of about 15μm. In addition to that, we introduce the procedure to evaluate the maximal permissible error calculation on pure statistics based on the length measurement error. Reconstruction Discussion is focused on the stability of reconstruction and the results of individual errors.

  • Czech name

  • Czech description

Classification

  • Type

    V<sub>souhrn</sub> - Summary research report

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/TN01000008" target="_blank" >TN01000008: Center of electron and photonic optics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Number of pages

    5

  • Place of publication

    Neuveden

  • Publisher/client name

    Neuveden

  • Version