Bounded solutions to systems of fractional discrete equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU145100" target="_blank" >RIV/00216305:26620/22:PU145100 - isvavai.cz</a>
Result on the web
<a href="https://www.degruyter.com/document/doi/10.1515/anona-2022-0260/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/anona-2022-0260/html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/anona-2022-0260" target="_blank" >10.1515/anona-2022-0260</a>
Alternative languages
Result language
angličtina
Original language name
Bounded solutions to systems of fractional discrete equations
Original language description
The article is concerned with systems of fractional discrete equations Delta(alpha)x(n + 1) = F-n(n, x(n), x(n - 1), ..., x(n(0))), n = n(0), n(0) + 1, ..., where n(0) is an element of Z , n is an independent variable, Delta(alpha) is an alpha-order fractional difference, alpha is an element of R, F-n : {n} x Rn-n0+1 -> R-s, S >= 1 is a fixed integer, and x : {n(0), n(0) + 1, ...} -> R-s is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n >= n(0), which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Delta(alpha)x(n + 1) = A(n)x(n) + delta(n), n = n(0), n(0) + 1, ..., where A(n) is a square matrix and delta(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-23815S" target="_blank" >GA19-23815S: Identification of Nonlinear Fractional-Order Dynamical Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advances in Nonlinear Analysis
ISSN
2191-9496
e-ISSN
2191-950X
Volume of the periodical
11
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
17
Pages from-to
1614-1630
UT code for WoS article
000827754300001
EID of the result in the Scopus database
2-s2.0-85135623952