All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bounded solutions to systems of fractional discrete equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU145100" target="_blank" >RIV/00216305:26620/22:PU145100 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.degruyter.com/document/doi/10.1515/anona-2022-0260/html" target="_blank" >https://www.degruyter.com/document/doi/10.1515/anona-2022-0260/html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/anona-2022-0260" target="_blank" >10.1515/anona-2022-0260</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bounded solutions to systems of fractional discrete equations

  • Original language description

    The article is concerned with systems of fractional discrete equations Delta(alpha)x(n + 1) = F-n(n, x(n), x(n - 1), ..., x(n(0))), n = n(0), n(0) + 1, ..., where n(0) is an element of Z , n is an independent variable, Delta(alpha) is an alpha-order fractional difference, alpha is an element of R, F-n : {n} x Rn-n0+1 -> R-s, S >= 1 is a fixed integer, and x : {n(0), n(0) + 1, ...} -> R-s is a dependent (unknown) variable. A retract principle is used to prove the existence of solutions with graphs remaining in a given domain for every n >= n(0), which then serves as a basis for further proving the existence of bounded solutions to a linear nonhomogeneous system of discrete equations Delta(alpha)x(n + 1) = A(n)x(n) + delta(n), n = n(0), n(0) + 1, ..., where A(n) is a square matrix and delta(n) is a vector function. Illustrative examples accompany the statements derived, possible generalizations are discussed, and open problems for future research are formulated as well.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-23815S" target="_blank" >GA19-23815S: Identification of Nonlinear Fractional-Order Dynamical Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Nonlinear Analysis

  • ISSN

    2191-9496

  • e-ISSN

    2191-950X

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    17

  • Pages from-to

    1614-1630

  • UT code for WoS article

    000827754300001

  • EID of the result in the Scopus database

    2-s2.0-85135623952