All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Vitamins as Active Agents for Highly Emissive and Stable Nanostructured Halide Perovskite Inks and 3D Composites Fabricated by Additive Manufacturing

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU147563" target="_blank" >RIV/00216305:26620/23:PU147563 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216275:25310/23:39919262

  • Result on the web

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/adfm.202210802" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/adfm.202210802</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/adfm.202210802" target="_blank" >10.1002/adfm.202210802</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Vitamins as Active Agents for Highly Emissive and Stable Nanostructured Halide Perovskite Inks and 3D Composites Fabricated by Additive Manufacturing

  • Original language description

    The use of non-toxic and low-cost vitamins like α-tocopherol (α-TCP, vitamin E) to improve the photophysical properties and stability of perovskite nanocrystals (PNCs), through post-synthetic ligand surface passivation, is demonstrated for the first time. Especially interesting is its effect on CsPbI3 the most unstable inorganic PNC. Adding α-TCP produces that the photoluminescence quantum yield (PLQY) of freshly prepared and aged PNCs achieves values of ≈98% and 100%, respectively. After storing 2 months under ambient air and 60% relative humidity, PLQY is maintained at 85% and 67%, respectively. α-TCP restores the PL features of aged CsPbI3 PNCs, and mediates the radiative recombination channels by reducing surface defects. In addition, the combination of α-TCP and PNCs facilitates the chemical formulation to prepare PNCs-acrylic polymer composites processable by additive manufacturing. This enables the development of complex shaped parts with improved luminescent features and long-term stability for 4 months, which is not possible for non-modified PNCs. A PLQY ≈92% is reached in the 3D printed polymer/PNC composite, the highest value obtained for a red-emitting composite solid until now as far as it is known. The passivation shell provided by α-TCP makes that PNCs inks do not suffer any degradation process avoiding the contact with the environment and preserve their properties after reacting with polar monomers during composite polymerization.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    ADVANCED FUNCTIONAL MATERIALS

  • ISSN

    1616-301X

  • e-ISSN

    1616-3028

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

    000963969600051

  • EID of the result in the Scopus database

    2-s2.0-85143522843