All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Investigating the thickness-effect of free-standing high aspect-ratio TiO2 nanotube layers on microwave-photoresponse using planar microwave resonators

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU148456" target="_blank" >RIV/00216305:26620/23:PU148456 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216275:25310/23:39920434

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2352940723001026" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352940723001026</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apmt.2023.101832" target="_blank" >10.1016/j.apmt.2023.101832</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Investigating the thickness-effect of free-standing high aspect-ratio TiO2 nanotube layers on microwave-photoresponse using planar microwave resonators

  • Original language description

    One-dimensional TiO2 nanotube (TNT) layers are a promising candidate for UV detection due to their distinctive anisotropic geometry which is effective for light harvesting and rapid carrier transport. Here, the photosensitivity efficiency of TNT layers with various thicknesses of 15, 50, 80, and 110 mu m was utilized at a microwave frequency regime by modeling and experimentally. A planar microwave split ring resonator (PMSRR) was designed and fabricated to operate at -8 GHz to study TNT layers by monitoring the scattering parameter (S21) of the PMSRR under a constant UV irradiation power of -96.4 mu W/cm2. According to the results, the 80 mu m thick TNT layers demonstrated the highest resonant amplitude variation for the customized PMSRR. The change of the resonant amplitude was mainly attributed to the conductivity variation contributed by perturbation of trapped electron concentration, as the dominant factor under UV illumination, and their electromagnetic wave interaction. The main advantage of the proposed method of PMSRR for microwave photosensitivity monitoring over the conventional direct current (DC) conductivity measurements is to eliminate the effect of contact resistance between the TNT layers and metal electrodes utilizing the contactless aspect of wave interactions with the TNT layers at microwave regime to perform electrode-less measurements.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20500 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/EF17_048%2F0007421" target="_blank" >EF17_048/0007421: Strengthening interdisciplinary cooperation in research of nanomaterials and their effects on living organisms (NANOBIO)</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Materials Today

  • ISSN

    2352-9407

  • e-ISSN

  • Volume of the periodical

    32

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    1-10

  • UT code for WoS article

    000991219100001

  • EID of the result in the Scopus database

    2-s2.0-85153801470