Exploring the structural and optical properties of Ir-doped ZnO thin films
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F23%3APU150331" target="_blank" >RIV/00216305:26620/23:PU150331 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0925346723007516" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0925346723007516</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.optmat.2023.114179" target="_blank" >10.1016/j.optmat.2023.114179</a>
Alternative languages
Result language
angličtina
Original language name
Exploring the structural and optical properties of Ir-doped ZnO thin films
Original language description
In this investigation, ZnO and Ir doped ZnO thin films were deposited on glass substrates by sol-gel spin coating technique. X-Ray diffraction study revealed that the obtained thin films possessed polycrystalline structure. The average crystallite size of ZIRO0, ZIRO2, and ZIRO6 thin films was 38 nm, 51 nm, and 43 nm, respectively. Structural parameters (lattice parameters, the volume of unit cell, atomic packing fraction, bond length, and dislocation density) of ZnO and Ir substituted ZnO thin films were determined. The unit cell's volume increased from 47.52 & ANGS;3 to 54.50 & ANGS;3 when the Ir dopant level became 6%. Moreover, the atomic packing fraction value also raised from 75.3% to 80.5% by increasing Ir doping. The morphological characteristics of the samples were studied by field emission scanning electron microscopy (FESEM). It is seen from those images that the diameters of the grains on the surface of the undoped ZnO thin film range roughly from 30 to 45 nm. On the other hand, the diameters of the grain sizes of the 2% Ir and 6% Ir doped ZnO thin films vary between 45 nm and 75 nm. The thickness of ZnO and Ir doped ZnO thin films was obtained from a cross-section of the FESEM image. The thickness value of undoped, 2% Ir doped, and 6% Ir doped ZnO thin films was found to be -512 nm, 350 nm, and 393.4 nm, respectively. X-ray photoelectron spectroscopy studies revealed the valence states of Zn and Ir as 2+ and 4+, respectively. The optical band gap of the thin films was determined by diffuse reflection spectroscopy. The optical band gap value of the studied thin films was determined using both Tauc's plots and Kubelka-Munk plots. While Tauc's plots showed that the optical bandgap of ZnO decreased from 3.28 eV to 3.21 eV with Ir substitution, Kubelka-Munk plots demonstrated that the optical bandgap of ZnO declined from 3.26 eV to 3.11 eV. In addition, diffuse reflectance spectroscopy was used to investigate various optical characteristics, including transm
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
21001 - Nano-materials (production and properties)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
OPTICAL MATERIALS
ISSN
0925-3467
e-ISSN
1873-1252
Volume of the periodical
143
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
12
Pages from-to
„“-„“
UT code for WoS article
001051291700001
EID of the result in the Scopus database
2-s2.0-85166618732