All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nanocrystalline Cubic Phase Scandium-Stabilized Zirconia Thin Films

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU151501" target="_blank" >RIV/00216305:26620/24:PU151501 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2079-4991/14/8/708" target="_blank" >https://www.mdpi.com/2079-4991/14/8/708</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/nano14080708" target="_blank" >10.3390/nano14080708</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nanocrystalline Cubic Phase Scandium-Stabilized Zirconia Thin Films

  • Original language description

    The cubic zirconia (ZrO2) is attractive for a broad range of applications. However, at room temperature, the cubic phase needs to be stabilized. The most studied stabilization method is the addition of the oxides of trivalent metals, such as Sc2O3. Another method is the stabilization of the cubic phase in nanostructures-nanopowders or nanocrystallites of pure zirconia. We studied the relationship between the size factor and the dopant concentration range for the formation and stabilization of the cubic phase in scandium-stabilized zirconia (ScSZ) films. The thin films of (ZrO2)1-x(Sc2O3)x, with x from 0 to 0.2, were deposited on room-temperature substrates by reactive direct current magnetron co-sputtering. The crystal structure of films with an average crystallite size of 85 & Aring; was cubic at Sc2O3 content from 6.5 to 17.5 mol%, which is much broader than the range of 8-12 mol.% of the conventional deposition methods. The sputtering of ScSZ films on hot substrates resulted in a doubling of crystallite size and a decrease in the cubic phase range to 7.4-11 mol% of Sc2O3 content. This confirmed that the size of crystallites is one of the determining factors for expanding the concentration range for forming and stabilizing the cubic phase of ScSZ films.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nanomaterials

  • ISSN

    2079-4991

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

    „“-„“

  • UT code for WoS article

    001210295800001

  • EID of the result in the Scopus database

    2-s2.0-85191288488