Determination of Optical and Structural Parameters of Thin Films with Differently Rough Boundaries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU154743" target="_blank" >RIV/00216305:26620/24:PU154743 - isvavai.cz</a>
Alternative codes found
RIV/00177016:_____/24:N0000144 RIV/00216224:14310/24:00137679
Result on the web
<a href="https://www.mdpi.com/2079-6412/14/11/1439" target="_blank" >https://www.mdpi.com/2079-6412/14/11/1439</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/coatings14111439" target="_blank" >10.3390/coatings14111439</a>
Alternative languages
Result language
angličtina
Original language name
Determination of Optical and Structural Parameters of Thin Films with Differently Rough Boundaries
Original language description
The optical characterization of non-absorbing, homogeneous, isotropic polymer-like thin films with correlated, differently rough boundaries is essential in optimizing their performance in various applications. A central aim of this study is to derive the general formulae necessary for the characterization of such films. The applicability of this theory is illustrated through the characterization of a polymer-like thin film deposited by plasma-enhanced chemical vapor deposition onto a silicon substrate with a randomly rough surface, focusing on the analysis of its rough boundaries over a wide range of spatial frequencies. The method is based on processing experimental data obtained using variable-angle spectroscopic ellipsometry and spectroscopic reflectometry. The transition layer is considered at the lower boundary of the polymer-like thin film. The spectral dependencies of the optical constants of the polymer-like thin film and the transition layer are determined using the Campi-Coriasso dispersion model. The reflectance data are processed using a combination of Rayleigh-Rice theory and scalar diffraction theory in the near-infrared and visible spectral ranges, while scalar diffraction theory is used for the processing of reflectance data within the ultraviolet range. Rayleigh-Rice theory alone is sufficient for the processing of the ellipsometric data across the entire spectral range. We accurately determine the thicknesses of the polymer-like thin film and the transition layer, as well as the roughness parameters of both boundaries, with the root mean square (rms) values cross-validated using atomic force microscopy. Notably, the rms values derived from optical measurements and atomic force microscopy show excellent agreement. These findings confirm the reliability of the optical method for the detailed characterization of thin films with differently rough boundaries, supporting the applicability of the proposed method in high-precision film analysis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Coatings, MDPI
ISSN
2079-6412
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
20
Pages from-to
„“-„“
UT code for WoS article
001364101000001
EID of the result in the Scopus database
2-s2.0-85210172465