Simulation-Based Diagnosis for Cyber-Physical Systems - A General Approach and Case Study on a Dual Three-Phase E-Machine
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU154787" target="_blank" >RIV/00216305:26620/24:PU154787 - isvavai.cz</a>
Result on the web
<a href="https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2024.18" target="_blank" >https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2024.18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/OASIcs.DX.2024.18" target="_blank" >10.4230/OASIcs.DX.2024.18</a>
Alternative languages
Result language
angličtina
Original language name
Simulation-Based Diagnosis for Cyber-Physical Systems - A General Approach and Case Study on a Dual Three-Phase E-Machine
Original language description
This paper presents a simulation-based approach for fault diagnosis in cyber-physical systems. We utilize simulation models to generate training data for machine learning classifiers to detect faults and identify the root cause. The presented processing pipeline includes simulation model validation, training data generation, data preprocessing, and the implementation of a diagnosis method. A case study with a dual three-phase e-machine highlights the results and challenges of the simulation-based diagnosis approach. The e-machine simulation model provides a complex and robust system representation, including the capability to inject inter-turn short-circuit faults. The introduced validation procedures of the simulation model revealed limitations in signal similarity and distinguishability compared to real system behavior. Based on the discovered limitations, the overall best results are achieved by applying an Autoencoder model for anomaly detection, followed by a Random Forest classifier to identify the specific anomalies. Further, the focus is on identifying the affected e-machine phase rather than the exact number of faulty winding turns. The paper shows the challenges when applying a simulation-based diagnosis approach to time-series data and underlines the required analysis of simulation models. In addition, the flexible adaption in the diagnosis strategies enhances the efficient utilization of cyber-physical system models in fault diagnosis and root cause identification.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
<a href="/en/project/9A22002" target="_blank" >9A22002: Artificial Intelligence using Quantum measured Information for realtime distributed systems at the edge</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)
ISBN
978-3-95977-356-0
ISSN
2190-6807
e-ISSN
—
Number of pages
21
Pages from-to
„18:1“-„18:21“
Publisher name
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Place of publication
neuveden
Event location
Vídeň
Event date
Nov 4, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—