All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Simulation-Based Diagnosis for Cyber-Physical Systems - A General Approach and Case Study on a Dual Three-Phase E-Machine

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F24%3APU154787" target="_blank" >RIV/00216305:26620/24:PU154787 - isvavai.cz</a>

  • Result on the web

    <a href="https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2024.18" target="_blank" >https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2024.18</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/OASIcs.DX.2024.18" target="_blank" >10.4230/OASIcs.DX.2024.18</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Simulation-Based Diagnosis for Cyber-Physical Systems - A General Approach and Case Study on a Dual Three-Phase E-Machine

  • Original language description

    This paper presents a simulation-based approach for fault diagnosis in cyber-physical systems. We utilize simulation models to generate training data for machine learning classifiers to detect faults and identify the root cause. The presented processing pipeline includes simulation model validation, training data generation, data preprocessing, and the implementation of a diagnosis method. A case study with a dual three-phase e-machine highlights the results and challenges of the simulation-based diagnosis approach. The e-machine simulation model provides a complex and robust system representation, including the capability to inject inter-turn short-circuit faults. The introduced validation procedures of the simulation model revealed limitations in signal similarity and distinguishability compared to real system behavior. Based on the discovered limitations, the overall best results are achieved by applying an Autoencoder model for anomaly detection, followed by a Random Forest classifier to identify the specific anomalies. Further, the focus is on identifying the affected e-machine phase rather than the exact number of faulty winding turns. The paper shows the challenges when applying a simulation-based diagnosis approach to time-series data and underlines the required analysis of simulation models. In addition, the flexible adaption in the diagnosis strategies enhances the efficient utilization of cyber-physical system models in fault diagnosis and root cause identification.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

    <a href="/en/project/9A22002" target="_blank" >9A22002: Artificial Intelligence using Quantum measured Information for realtime distributed systems at the edge</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)

  • ISBN

    978-3-95977-356-0

  • ISSN

    2190-6807

  • e-ISSN

  • Number of pages

    21

  • Pages from-to

    „18:1“-„18:21“

  • Publisher name

    Schloss Dagstuhl – Leibniz-Zentrum für Informatik

  • Place of publication

    neuveden

  • Event location

    Vídeň

  • Event date

    Nov 4, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article