All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimizing of pre-processing analysis for Illumina RNA-Seq data in Arabidopsis thaliana

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00843989%3A_____%2F24%3AE0111542" target="_blank" >RIV/00843989:_____/24:E0111542 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26220/24:PU154766

  • Result on the web

    <a href="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf" target="_blank" >https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_2.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimizing of pre-processing analysis for Illumina RNA-Seq data in Arabidopsis thaliana

  • Original language description

    Gene expression analysis through RNA sequencing (RNA-Seq) has revolutionized molecular biology, providing profound insights into the intricate transcriptional landscapes of organisms. Arabidopsis thaliana, a widely studied model plant, serves as a cornerstone for investigating fundamental biological and ecology processes. However, accurate interpretation of RNASeq data hinges on meticulous pre-processing methods to ensure data integrity and trustworthiness, especially in the context of Illumina sequencing. In this research, we present a comprehensive framework for optimizing pre-processing analysis tailored specifically for Arabidopsis thaliana RNA-Seq datasets generated through Illumina sequencing. Our approach encompasses rigorous quality control, precise read alignment, transcript quantification, and normalization procedures crucial for subsequent differential expression analysis. Additionally, we address unique considerations and challenges inherent to Arabidopsis thaliana datasets, providing valuable insights for researchers in the field.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings II of the 30th Conference STUDENT EEICT 2024: Selected papers

  • ISBN

    978-80-214-6230-4

  • ISSN

    2788-1334

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

    142-145

  • Publisher name

    Vysoké učení technické,

  • Place of publication

    Brno : Vysoké učení technické, 2024

  • Event location

    Brno, Czech Republic

  • Event date

    Apr 23, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article