All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An AI Factory Digital Twin Deployed Within a High Performance Edge Architecture

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F02673975%3A_____%2F23%3AN0000002" target="_blank" >RIV/02673975:_____/23:N0000002 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/10355613" target="_blank" >https://ieeexplore.ieee.org/document/10355613</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICNP59255.2023.10355613" target="_blank" >10.1109/ICNP59255.2023.10355613</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An AI Factory Digital Twin Deployed Within a High Performance Edge Architecture

  • Original language description

    The exponential proliferation of big data and computation-intensive tasks, such as Artificial Intelligence (AI) applications in factories, poses a significant challenge for the current datacenter-focused technological architecture. The ”Big data pRocessing and Artificial Intelligence at the Network Edge” (BRAINE) project addresses this problem by introducing an innovative system architecture designed explicitly for compute intensive edge deployments. BRAINE focuses on decentralizing the computation tasks, enabling a significant reduction in latency, and optimizing the placement of applications within a cloud-edge continuum to ensure optimal operational efficiency. This paper presents the design, implementation, and testing of our novel system architecture in the context of an AI digital twin for factory robotics. Our empirical results indicate substantial improvements in performance metrics such as processing speed and latency compared to traditional architectures and approaches.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

    <a href="/en/project/8A20004" target="_blank" >8A20004: Big data pRocessing and Artificial Intelligence at the Network Edge</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2023 IEEE 31st International Conference on Network Protocols (ICNP)

  • ISBN

    979-8-3503-0322-3

  • ISSN

  • e-ISSN

    2643-3303

  • Number of pages

    6

  • Pages from-to

  • Publisher name

  • Place of publication

  • Event location

    Reykjavik, Iceland

  • Event date

    Oct 10, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article