All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Machine Learning Blunts the Needle of Advanced SQL Injections

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F05060711%3A_____%2F19%3AN0000003" target="_blank" >RIV/05060711:_____/19:N0000003 - isvavai.cz</a>

  • Result on the web

    <a href="https://mendel-journal.org/index.php/mendel/article/view/74" target="_blank" >https://mendel-journal.org/index.php/mendel/article/view/74</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13164/mendel.2019.1.023" target="_blank" >10.13164/mendel.2019.1.023</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Machine Learning Blunts the Needle of Advanced SQL Injections

  • Original language description

    SQL injection is one of the most popular and serious information security threats. By exploiting database vulnerabilities, attackers may get access to sensitive data or enable compromised computers to conduct further network attacks. Our research is focused on applying machine learning approaches for identication of injection characteristics in the HTTP query string. We compare results from Rule-based Intrusion Detection System, Support Vector Machines, Multilayer Perceptron, Neural Network with Dropout layers, and Deep Sequential Models (Long Short-Term Memory, and Gated Recurrent Units) using multiple string analysis, bag-of-word techniques, and word embedding for query string vectorization. Results proved benets of applying machine learning approach for detection malicious pattern in HTTP query string.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/TJ01000381" target="_blank" >TJ01000381: Advanced behavioural models of application layer for effective analysis of traffic in business networks</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    MENDEL

  • ISBN

  • ISSN

    1803-3814

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    23-30

  • Publisher name

    Institute of Automation and Computer Science of the Brno University of Technology

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    Jan 1, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article