Machine Learning Blunts the Needle of Advanced SQL Injections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F05060711%3A_____%2F19%3AN0000003" target="_blank" >RIV/05060711:_____/19:N0000003 - isvavai.cz</a>
Result on the web
<a href="https://mendel-journal.org/index.php/mendel/article/view/74" target="_blank" >https://mendel-journal.org/index.php/mendel/article/view/74</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/mendel.2019.1.023" target="_blank" >10.13164/mendel.2019.1.023</a>
Alternative languages
Result language
angličtina
Original language name
Machine Learning Blunts the Needle of Advanced SQL Injections
Original language description
SQL injection is one of the most popular and serious information security threats. By exploiting database vulnerabilities, attackers may get access to sensitive data or enable compromised computers to conduct further network attacks. Our research is focused on applying machine learning approaches for identication of injection characteristics in the HTTP query string. We compare results from Rule-based Intrusion Detection System, Support Vector Machines, Multilayer Perceptron, Neural Network with Dropout layers, and Deep Sequential Models (Long Short-Term Memory, and Gated Recurrent Units) using multiple string analysis, bag-of-word techniques, and word embedding for query string vectorization. Results proved benets of applying machine learning approach for detection malicious pattern in HTTP query string.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/TJ01000381" target="_blank" >TJ01000381: Advanced behavioural models of application layer for effective analysis of traffic in business networks</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
MENDEL
ISBN
—
ISSN
1803-3814
e-ISSN
—
Number of pages
8
Pages from-to
23-30
Publisher name
Institute of Automation and Computer Science of the Brno University of Technology
Place of publication
Brno
Event location
Brno
Event date
Jan 1, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—