All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Combining U-Net Auto-encoder and MUSIC Algorithm for Improving DOA Estimation Accuracy under Defects of Antenna Array

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25547526%3A_____%2F22%3AN0000001" target="_blank" >RIV/25547526:_____/22:N0000001 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9943003" target="_blank" >https://ieeexplore.ieee.org/document/9943003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ATC55345.2022.9943003" target="_blank" >10.1109/ATC55345.2022.9943003</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Combining U-Net Auto-encoder and MUSIC Algorithm for Improving DOA Estimation Accuracy under Defects of Antenna Array

  • Original language description

    Direction of arrival (DOA) estimation plays a crucial role in radio signal surveillance and reconnaissance systems because it provides spatial information to localize radiated signal sources. Conventional DOA estimation algorithms, such as multiple signal classification (MUSIC) and estimation of signal parameters via rotational invariant technique (ESPRIT), are very sensitive to defects of antenna arrays that reduce the accuracy of estimated DOA in real applications. To mitigate this issue, an auto-encoder based on U-Net is proposed to transfer the imperfect covariance matrix to a new one; then, the MUSIC algorithm is applied to the new covariance matrix to estimate the DOAs of incoming signals. The proposed approach is investigated through simulation for a uniform linear array of eight elements with an inter-element space of half-wavelength. The simulation results indicate that our proposed method achieves a good performance in terms of DOA estimation accuracy. In comparison, the proposed model has outperformed the other models, such as conventional MUSIC, ESPRIT, and two other deep neural networks.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

    <a href="/en/project/TM02000035" target="_blank" >TM02000035: NEO classification of signals (NEOCLASSIG) for radio surveillance systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.

Data specific for result type

  • Article name in the collection

    Combining U-Net Auto-encoder and MUSIC Algorithm for Improving DOA Estimation Accuracy under Defects of Antenna Array

  • ISBN

    978-1-6654-5188-8

  • ISSN

    2162-1039

  • e-ISSN

    2162-1020

  • Number of pages

    5

  • Pages from-to

    413-417

  • Publisher name

    IEEE

  • Place of publication

    Ha Noi, Vietnam

  • Event location

    Ha Noi, Vietnam

  • Event date

    Jan 1, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article