All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

UNet-rootMUSIC: A High Accuracy Direction of Arrival Estimation Method under Array Imperfection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F25547526%3A_____%2F23%3AN0000003" target="_blank" >RIV/25547526:_____/23:N0000003 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S143484112300482X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S143484112300482X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aeue.2023.155008" target="_blank" >10.1016/j.aeue.2023.155008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    UNet-rootMUSIC: A High Accuracy Direction of Arrival Estimation Method under Array Imperfection

  • Original language description

    In the practical direction-finding systems, the accuracy and resolution of the direction of arrival (DOA) estimation are affected not only by the Gaussian noise and array size but also by hardware configuration imperfections, such as errors in element manufacturing and mounting. These impairments cause phase and amplitude errors in estimating the DOA of signal sources. To address this issue, this paper proposes to combine a U-shape deep neural network (UNet) with the multiple signal classification via the root of the polynomial (rootMUSIC) algorithm (so-called UNet-rootMUSIC) to improve the DOA estimation accuracy. In this approach, the UNet model plays a role in converting a covariance matrix of received signals containing phase and gain errors into a nearly perfect one of the ideal antenna array. The rootMUSIC algorithm is then employed to estimate the signal DOA based on the converted covariance matrix. The DOA estimation performance of the uniform linear array of eight elements with an inter-element distance of is analyzed through experimental simulations. The simulation results demonstrate that our method can significantly reduce the root mean square error of DOA estimation compared to the conventional MUSIC, rootMUSIC, ESPRIT methods and two deep neural network-based angular classification methods.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20202 - Communication engineering and systems

Result continuities

  • Project

    <a href="/en/project/TM02000035" target="_blank" >TM02000035: NEO classification of signals (NEOCLASSIG) for radio surveillance systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.

Data specific for result type

  • Name of the periodical

    UNet-rootMUSIC: A High Accuracy Direction of Arrival Estimation Method under Array Imperfection

  • ISSN

    1434-8411

  • e-ISSN

  • Volume of the periodical

    Volume 173

  • Issue of the periodical within the volume

    2024-01 | Journal article

  • Country of publishing house

    VN - VIET NAM

  • Number of pages

    5

  • Pages from-to

    334 - 338

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85120580975