Application of Artificial Neural Networks to Streamline the Process of Adaptive Cruise Control
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F29142890%3A_____%2F21%3A00041385" target="_blank" >RIV/29142890:_____/21:00041385 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2071-1050/13/8/4572/htm" target="_blank" >https://www.mdpi.com/2071-1050/13/8/4572/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/su13084572" target="_blank" >10.3390/su13084572</a>
Alternative languages
Result language
angličtina
Original language name
Application of Artificial Neural Networks to Streamline the Process of Adaptive Cruise Control
Original language description
This article deals with the use of neural networks for estimation of deceleration model parameters for the adaptive cruise control unit. The article describes the basic functionality of adaptive cruise control and creates a mathematical model of braking, which is one of the basic functions of adaptive cruise control. Furthermore, an analysis of the influences acting in the braking process is performed, the most significant of which are used in the design of deceleration prediction for the adaptive cruise control unit using neural networks. Such a connection using artificial neural networks using modern sensors can be another step towards full vehicle autonomy. The advantage of this approach is the original use of neural networks, which refines the determination of the deceleration value of the vehicle in front of a static or dynamic obstacle, while including a number of influences that affect the braking process and thus increase driving safety.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20205 - Automation and control systems
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Sustainability
ISSN
2071-1050
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
8
Country of publishing house
CH - SWITZERLAND
Number of pages
25
Pages from-to
1-25
UT code for WoS article
000645367400001
EID of the result in the Scopus database
—