All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Origin of heavy rare earth element enrichment in carbonatites

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F41601670%3A_____%2F23%3AN0000010" target="_blank" >RIV/41601670:_____/23:N0000010 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.gca.2023.08.025" target="_blank" >http://dx.doi.org/10.1016/j.gca.2023.08.025</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.gca.2023.08.025" target="_blank" >10.1016/j.gca.2023.08.025</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Origin of heavy rare earth element enrichment in carbonatites

  • Original language description

    Heavy rare earth elements (HREE) are currently in high demand for use in high technology, renewable energy and low-carbon transport, but they are the least abundant in nature. Carbonatites are the primary source of REE; however, they are dominated by light REE (LREE). It remains unknown whether carbonatites have the potential to form economic HREE mineralization. Here we report a xenotime-bearing carbonatite in the Bachu REE deposit, northwestern Tarim Large Igneous Province (TLIP), China, and infer the origin of HREE in carbonatites. The rocks evolved from dolomite to calcite carbonatites, and their HREE content correspondingly increased. Both types of rocks have similar monazite U-Pb ages (ca. 300 Ma), and are older than the major eruption of flood basalt of the TLIP, and associated alkaline complexes. They contain higher εNd(t) (2.4–4.1) and lower initial Sr isotopic ratios [(87Sr/86Sr)i = 0.7036–0.7041] than the basalts but similar values to those of younger alkaline rocks. The carbonatites are inferred to be directly derived from low-degree melting of lithospheric mantle sources induced by a deep-seated mantle plume. Calcite carbonatites contain characteristic xenotime, which is associated with burbankite, sulfates, and minor quartz. The rock-forming calcite shows high HREE abundance and flat REE patterns (La/Ybcn = 0.3–2.1). Apatite and LREE minerals in calcite carbonatites also have a higher HREE content (e.g., Y2O3 up to 2 wt%) than those in dolomite rocks. This finding indicates that the early dolomite carbonatite underwent strong fractionation of dolomite and LREE minerals, resulting in HREE and alkali enrichment in the evolved calcite rocks. High amounts of alkalis further enhance the solubility of REE, particularly HREE, in the residual melts. Silica assimilation from the country rocks facilitates the HREE mineralization by sequestering alkalis. Therefore, HREE enrichment in carbonatites may require substantial fractional crystallization of initial melts as well as alkali conservation during ascent.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

    <a href="/en/project/GX19-29124X" target="_blank" >GX19-29124X: EVOLUTION AND POST-EMPLACEMENT HISTORY OF CARBONATITES: IMPLICATIONS FOR THE MOBILITY AND CONCENTRATION OF CRITICAL METALS</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geochemica et Cosmochimica Acta

  • ISSN

    0016-7037

  • e-ISSN

    1872-9533

  • Volume of the periodical

    362

  • Issue of the periodical within the volume

    December 2023

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    115-126

  • UT code for WoS article

    001110835400001

  • EID of the result in the Scopus database