All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mineralogy and element geochemistry of the Bayan Obo (China) carbonatite dykes: Implications for REE mineralization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F41601670%3A_____%2F24%3AN0000001" target="_blank" >RIV/41601670:_____/24:N0000001 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.oregeorev.2024.105873" target="_blank" >https://doi.org/10.1016/j.oregeorev.2024.105873</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.oregeorev.2024.105873" target="_blank" >10.1016/j.oregeorev.2024.105873</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mineralogy and element geochemistry of the Bayan Obo (China) carbonatite dykes: Implications for REE mineralization

  • Original language description

    The Bayan Obo deposit in China is the world’s largest rare earth element (REE) deposit. However, its genesis remains highly debated. It is considered to have a close genetic association with carbonatites because of the presence of nearby carbonatite dykes and the geochemical similarities between these dykes and the orebody. However, the evolution of these dykes and associated REE mineralization remain poorly understood, hindering the origin interpretation of the deposit. This study provides new insights into the petrography, mineralogy, and major- and trace-element geochemistry of these carbonatite dykes and rock-forming minerals to reconstruct the magmatic evolution and REE enrichment of the deposit. The dykes evolved from dolomite- to calcite-dominated (i.e., calcite and fenitized calcite) carbonatites, and their REE content remarkably increased, with the latter developing strong REE mineralization. The dolomites and minor calcites within the dolomite carbonatites exhibit a steep negative slope with high light REE (LREE) enrichment and heavy REE (HREE) depletion, similar to the whole rock. In contrast, the calcites from the calcite-dominated carbonatites exhibit flat REE patterns with HREE enrichment. Combined with previous isotopic data and our petrology, mineralogy, and geochemistry study, we propose that these rocks are derived directly from the low-degree melting of the underlying mantle source. REE mineralization may be related to the progressive crystallization of rock-forming calcites of calcite-dominated carbonatites. Monazite, bastn¨ asite, parisite, and huanghoite are the dominant REE minerals and exhibit intimate associations with barite and alkaline silicate minerals such as aegirine, biotite, K-feldspar, and albite. This assemblage indicates that the REE were primarily transported via REE–sulfate and REE–alkali complexes, with the latter favoring HREE, and the precipitation of alkaline silicate minerals destabilized these REE complexes, facilitating REE mineralization.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10504 - Mineralogy

Result continuities

  • Project

    <a href="/en/project/GX19-29124X" target="_blank" >GX19-29124X: EVOLUTION AND POST-EMPLACEMENT HISTORY OF CARBONATITES: IMPLICATIONS FOR THE MOBILITY AND CONCENTRATION OF CRITICAL METALS</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Ore Geology Reviews

  • ISSN

    0169-1368

  • e-ISSN

    1872-7360

  • Volume of the periodical

    165

  • Issue of the periodical within the volume

    January 18, 2024

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    001170842400001

  • EID of the result in the Scopus database