All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Productivity of sequences with respect to a given weight function

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F11%3A43880170" target="_blank" >RIV/44555601:13440/11:43880170 - isvavai.cz</a>

  • Result on the web

    <a href="http://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271523&_user=640945&_pii=S0166864110003615&_check=y&_origin=article&_zone=toolbar&_coverDate=15-Feb-2011&view=c&origi" target="_blank" >http://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271523&_user=640945&_pii=S0166864110003615&_check=y&_origin=article&_zone=toolbar&_coverDate=15-Feb-2011&view=c&origi</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.topol.2010.11.009" target="_blank" >10.1016/j.topol.2010.11.009</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Productivity of sequences with respect to a given weight function

  • Original language description

    Given a function $f:Nto(omega+1)setminus{0}$, we say that a faithfully indexed sequence ${a_n:ninN}$ of elements of a topological group $G$ is: (i)~{em $f$-Cauchy productive ($f$-productive)/} provided that the sequence ${prod_{n=0}^m a_n^{z(n)}:minN}$ is left Cauchy (converges to some element of $G$, respectively) for each function $z:NtoZ$ such that $|z(n)|le f(n)$ for every $ninN$; (ii)~{em unconditionally $f$-Cauchy productive (unconditionally $f$-productive)/} provided thatthe sequence ${a_{varphi(n)}:ninN}$ is $(fcircvarphi)$-Cauchy productive (respectively, $(fcircvarphi)$-productive) for every bijection $varphi:NtoN$. (Bijections can be replaced by injections here.) We consider the question of existence of(unconditionally) $f$-productive sequences for a given ``weight function'' $f$. We prove that: (1) a Hausdorff group having an $f$-productive sequence for some $f$ contains a homeomorphic copy of the Cantor set; (2) if a non-discrete gro

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Topology and its Applications

  • ISSN

    0166-8641

  • e-ISSN

  • Volume of the periodical

    158

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    27

  • Pages from-to

    298-324

  • UT code for WoS article

    000286863400004

  • EID of the result in the Scopus database