All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Direct sums and products in topological groups and vector spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F16%3A43887078" target="_blank" >RIV/44555601:13440/16:43887078 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0022247X16000627" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0022247X16000627</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2016.01.037" target="_blank" >10.1016/j.jmaa.2016.01.037</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Direct sums and products in topological groups and vector spaces

  • Original language description

    We call a subset $A$ of an abelian topological group $G$: (i) {em absolutely Cauchy summable/} provided that for every open neighbourhood $U$ of $0$ one can find a finite set $Fsubseteq A$ such that the subgroup generated by $Asetminus F$ is contained in $U$; (ii) {em absolutely summable/} if, for every family ${z_a:ain A}$ of integer numbers, there exists $gin G$ such that the net $left{sum_{ain F} z_a a: Fsubseteq Ambox{ is finite}right}$ converges to $g$; (iii) {em topologically independent/} provided that $0not in A$ and for every neighbourhood $W$ of $0$ there exists a neighbourhood $V$ of $0$ such that, for every finite set $Fsubseteq A$ and each set ${z_a:ain F}$ of integers, $sum_{ain F}z_aain V$ implies that $z_aain W$ for all $ain F$. We prove that: (1) an abelian topological group contains a direct product (direct sum) of $kappa$-many non-trivial topological groups if and only if it contains a topologically independent, absolutely (Cauchy) summable subset of cardinality $kappa$; (2) a topological vector space contains $R^{(N)}$ as its subspace if and only if it has an infinite absolutely Cauchy summable set; (3) a topological vector space contains $R^{N}$ as its subspace if and only if it has an $R^N$ multiplier convergent series of non-zero elements. We answer a question of Huv{s}ek and generalize results by Bessaga-Pelczynski-Rolewicz, Dominguez-Tarieladze and Lipecki.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GPP201%2F12%2FP724" target="_blank" >GPP201/12/P724: Relations between topological spaces and their topological groups of G-valued continuous functions for a given topological group G</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Volume of the periodical

    2016

  • Issue of the periodical within the volume

    437

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    26

  • Pages from-to

    1257-1282

  • UT code for WoS article

    000370312500028

  • EID of the result in the Scopus database

    2-s2.0-84957434564