Direct sums and products in topological groups and vector spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F16%3A43887078" target="_blank" >RIV/44555601:13440/16:43887078 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0022247X16000627" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0022247X16000627</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.01.037" target="_blank" >10.1016/j.jmaa.2016.01.037</a>
Alternative languages
Result language
angličtina
Original language name
Direct sums and products in topological groups and vector spaces
Original language description
We call a subset $A$ of an abelian topological group $G$: (i) {em absolutely Cauchy summable/} provided that for every open neighbourhood $U$ of $0$ one can find a finite set $Fsubseteq A$ such that the subgroup generated by $Asetminus F$ is contained in $U$; (ii) {em absolutely summable/} if, for every family ${z_a:ain A}$ of integer numbers, there exists $gin G$ such that the net $left{sum_{ain F} z_a a: Fsubseteq Ambox{ is finite}right}$ converges to $g$; (iii) {em topologically independent/} provided that $0not in A$ and for every neighbourhood $W$ of $0$ there exists a neighbourhood $V$ of $0$ such that, for every finite set $Fsubseteq A$ and each set ${z_a:ain F}$ of integers, $sum_{ain F}z_aain V$ implies that $z_aain W$ for all $ain F$. We prove that: (1) an abelian topological group contains a direct product (direct sum) of $kappa$-many non-trivial topological groups if and only if it contains a topologically independent, absolutely (Cauchy) summable subset of cardinality $kappa$; (2) a topological vector space contains $R^{(N)}$ as its subspace if and only if it has an infinite absolutely Cauchy summable set; (3) a topological vector space contains $R^{N}$ as its subspace if and only if it has an $R^N$ multiplier convergent series of non-zero elements. We answer a question of Huv{s}ek and generalize results by Bessaga-Pelczynski-Rolewicz, Dominguez-Tarieladze and Lipecki.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GPP201%2F12%2FP724" target="_blank" >GPP201/12/P724: Relations between topological spaces and their topological groups of G-valued continuous functions for a given topological group G</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
2016
Issue of the periodical within the volume
437
Country of publishing house
US - UNITED STATES
Number of pages
26
Pages from-to
1257-1282
UT code for WoS article
000370312500028
EID of the result in the Scopus database
2-s2.0-84957434564