All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Admissible closure operators and varieties of semilattice-ordered normal bands

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F17%3A43892843" target="_blank" >RIV/44555601:13440/17:43892843 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.14232/actasm-016-777-4" target="_blank" >http://dx.doi.org/10.14232/actasm-016-777-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14232/actasm-016-777-4" target="_blank" >10.14232/actasm-016-777-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Admissible closure operators and varieties of semilattice-ordered normal bands

  • Original language description

    It is known that varieties of semilattice-ordered semigroups are in one-to-one correspondence with the ordered pairs (rho ,[ ]) where rho is a fully invariant congruence on the free semigroup on a countably infinite set and [ ] is a rho -admissible closure operator. We find all admissible closure operators for varieties of left normal bands. Using the obtained results we describe all varieties of semilattice-ordered left normal bands by admissible closure operators. We solve the identity problem for all varieties of semilattice-ordered normal bands.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta scientiarum mathematicarum.

  • ISSN

    0001-6969

  • e-ISSN

  • Volume of the periodical

    2017

  • Issue of the periodical within the volume

    83

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    16

  • Pages from-to

    35-50

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85020948147