Evaluation of the gene expression profiles complex proximity metric effectiveness based on a hybrid technique of gene expression data extraction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F21%3A43896988" target="_blank" >RIV/44555601:13440/21:43896988 - isvavai.cz</a>
Result on the web
<a href="http://ceur-ws.org/Vol-3038/paper10.pdf" target="_blank" >http://ceur-ws.org/Vol-3038/paper10.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Evaluation of the gene expression profiles complex proximity metric effectiveness based on a hybrid technique of gene expression data extraction
Original language description
Gene expression data processing in order to develop the systems of complex diseases diagnostic or/and gene regulatory networks (GRN) reconstruction is one of the actual direction of modern bioinformatics. One of the important stages of this problem solving is an extraction of mutually correlated gene expression profiles (GEP) considering the used proximity metric. Within the framework of our research, we evaluate the complex metric of GEP proximity calculated as the combination of modified mutual information criterion and Pearson's chi-squared test using OPTICS clustering algorithm implemented using principles of the objective clustering inductive technique (OCIT). The examined objects classification accuracy was used as the main criterion to access the applied method effectiveness. The simulation results have shown that the proposed technique allows us to form an optimal GEP cluster structure in terms of maximum values of the patterns classification accuracy quality criterion.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 4th International Conference on Informatics & Data-Driven Medicine
ISBN
—
ISSN
1613-0073
e-ISSN
—
Number of pages
11
Pages from-to
150-160
Publisher name
RWTH AACHEN
Place of publication
Aachen
Event location
Valencia
Event date
Nov 19, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000770795000016