All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evaluation of the gene expression profiles complex proximity metric effectiveness based on a hybrid technique of gene expression data extraction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F21%3A43896988" target="_blank" >RIV/44555601:13440/21:43896988 - isvavai.cz</a>

  • Result on the web

    <a href="http://ceur-ws.org/Vol-3038/paper10.pdf" target="_blank" >http://ceur-ws.org/Vol-3038/paper10.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evaluation of the gene expression profiles complex proximity metric effectiveness based on a hybrid technique of gene expression data extraction

  • Original language description

    Gene expression data processing in order to develop the systems of complex diseases diagnostic or/and gene regulatory networks (GRN) reconstruction is one of the actual direction of modern bioinformatics. One of the important stages of this problem solving is an extraction of mutually correlated gene expression profiles (GEP) considering the used proximity metric. Within the framework of our research, we evaluate the complex metric of GEP proximity calculated as the combination of modified mutual information criterion and Pearson&apos;s chi-squared test using OPTICS clustering algorithm implemented using principles of the objective clustering inductive technique (OCIT). The examined objects classification accuracy was used as the main criterion to access the applied method effectiveness. The simulation results have shown that the proposed technique allows us to form an optimal GEP cluster structure in terms of maximum values of the patterns classification accuracy quality criterion.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of the 4th International Conference on Informatics &amp; Data-Driven Medicine

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    150-160

  • Publisher name

    RWTH AACHEN

  • Place of publication

    Aachen

  • Event location

    Valencia

  • Event date

    Nov 19, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000770795000016