Hybrid Inductive Model of Differentially and Co-Expressed Gene Expression Profile Extraction Based on the JointUse of Clustering Technique and Convolutional Neural Network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F22%3A43897173" target="_blank" >RIV/44555601:13440/22:43897173 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2076-3417/12/22/11795" target="_blank" >https://www.mdpi.com/2076-3417/12/22/11795</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app122211795" target="_blank" >10.3390/app122211795</a>
Alternative languages
Result language
angličtina
Original language name
Hybrid Inductive Model of Differentially and Co-Expressed Gene Expression Profile Extraction Based on the JointUse of Clustering Technique and Convolutional Neural Network
Original language description
The development of hybrid models focused on gene expression data processing for the allocation of differently expressed and mutually correlated genes is one of the current directions of modern bioinformatics. The solution of this problem can allow us to improve the effectiveness of the existing systems for complex diseases diagnosis based on gene expression data analysis on the one hand and increase the efficiency of gene regulatory network reconstruction procedure by more careful selection of genes considering the type of disease on the other hand. In this research, we propose the stepwise procedure to form the subsets of mutually correlated and differently expressed gene expression profiles (GEP). Firstly, we allocate the informative GEP in terms of statistical and entropy criteria using the Harrington desirability function. Then, we performed the cluster analysis using SOTA and spectral clustering algorithms implemented within the framework of objective clustering inductive technology. The result of this step implementation is a set of clusters containing co- and differently expressed GEP. Validation of the model was performed using a one-dimensional two-layer convolutional neural network (CNN). The analysis of the simulation results has shown the high efficiency of the proposed model. The clusters of GEP formed based on the clustering quality criteria values allowed us to identify the investigated objects with high accuracy. Moreover, the simulation results have also shown that the hybrid inductive model based on the spectral clustering algorithm is more effective in comparison with the use of the SOTA clustering algorithm in terms of both the complexity of the optimal cluster structure forming and the classification accuracy of the objects that contain the allocated gene expression data as attributes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Sciences
ISSN
2076-3417
e-ISSN
2076-3417
Volume of the periodical
2022
Issue of the periodical within the volume
12(22)
Country of publishing house
CH - SWITZERLAND
Number of pages
23
Pages from-to
"nestrankovano"
UT code for WoS article
000887113100001
EID of the result in the Scopus database
—