All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural Network with L-M Algorithm for Arrhythmia Disease Classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F22%3A43896306" target="_blank" >RIV/44555601:13440/22:43896306 - isvavai.cz</a>

  • Result on the web

    <a href="http://10.1007/978-3-030-89899-1_33" target="_blank" >http://10.1007/978-3-030-89899-1_33</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-89899-1_33" target="_blank" >10.1007/978-3-030-89899-1_33</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural Network with L-M Algorithm for Arrhythmia Disease Classification

  • Original language description

    This paper presents a feedforward multilayer perceptron neural network with a Levenberg-Marquardt learning algorithm for recognizing arrhythmia disease from normal electrocardiogram (ECG) patterns. To the best of our knowledge, in the ?eld of arrhythmia disease classi?cation, classical approaches utilize either different QRS complex detection or feature reduction methods but not both at the same time; thus, this work provides an important contribution. A total of forty-four records were obtained from the MIT-BIH arrhythmia database to test the QRS complex detection method, and the obtained results were a speci?city of 96.16% and a sensitivity of 98.03%. The best classi?cation rate obtained using the presented approach was 98.27%.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances on P2P, Parallel, Grid, Cloud and Internet Computing

  • ISBN

    978-3-030-89899-1

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Number of pages

    20

  • Pages from-to

    309-318

  • Publisher name

    Springer Nature

  • Place of publication

    Basel

  • Event location

    Fukuoka, Japan

  • Event date

    Oct 28, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000722277600033