All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural Network with L-M Algorithm for Arrhythmia Disease Classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00361192" target="_blank" >RIV/68407700:21220/22:00361192 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-89899-1_33" target="_blank" >https://doi.org/10.1007/978-3-030-89899-1_33</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-89899-1_33" target="_blank" >10.1007/978-3-030-89899-1_33</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural Network with L-M Algorithm for Arrhythmia Disease Classification

  • Original language description

    his paper presents a feedforward multilayer perceptron neural network with a Levenberg-Marquardt learning algorithm for recognizing arrhythmia disease from normal electrocardiogram (ECG) patterns. To the best of our knowledge, in the field of arrhythmia disease classification, classical approaches utilize either different QRS complex detection or feature reduction methods but not both at the same time; thus, this work provides an important contribution. A total of forty-four records were obtained from the MIT-BIH arrhythmia database to test the QRS complex detection method, and the obtained results were a specificity of 96.16% and a sensitivity of 98.03%. The best classification rate obtained using the presented approach was 98.27%.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Lecture Notes in Networks and Systems

  • ISSN

    2367-3370

  • e-ISSN

  • Volume of the periodical

    343

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    10

  • Pages from-to

    309-318

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85118191234