All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sparse least squares K-SVCR multi-class classification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F24%3A43898581" target="_blank" >RIV/44555601:13440/24:43898581 - isvavai.cz</a>

  • Result on the web

    <a href="https://jnva.biemdas.com/archives/2507" target="_blank" >https://jnva.biemdas.com/archives/2507</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.23952/jnva.8.2024.6.07" target="_blank" >10.23952/jnva.8.2024.6.07</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sparse least squares K-SVCR multi-class classification

  • Original language description

    This paper introduces a novel model, the sparse least squares K-class support vector classificationregression with adaptive p-norm (PLSTKSVC), to tackle challenges in multi-class classification. Leveraging a &quot;1-versus-1-versus-rest&quot; structure, PLSTKSVC dynamically adjusts the parameter p based on the data, enabling an adaptive learning framework. By incorporating cardinality-constrained optimization, the model seamlessly integrates feature selection and classification. Although the p-norm is non-convex for 0 &lt; p&lt;1, PLSTKSVC efficiently addresses the associated optimization via linear systems of equations. PLSTKSVC offers several advantages, including simultaneous feature selection and classification, robust theoretical foundations, algorithmic efficiency, and strong empirical validation. The model?s theoretical contributions include lower bounds on non-zero solution entries and upper bounds on the optimal solution norm. Experimental results on multi-class classification datasets highlight the superior performance of PLSTKSVC, establishing it as a significant advancement in machine learning.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Nonlinear and Variational Analysis

  • ISSN

    2560-6921

  • e-ISSN

    2560-6778

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CA - CANADA

  • Number of pages

    19

  • Pages from-to

    953-971

  • UT code for WoS article

    001374806800007

  • EID of the result in the Scopus database

    2-s2.0-85208017159