Sparse least squares K-SVCR multi-class classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F24%3A43898581" target="_blank" >RIV/44555601:13440/24:43898581 - isvavai.cz</a>
Result on the web
<a href="https://jnva.biemdas.com/archives/2507" target="_blank" >https://jnva.biemdas.com/archives/2507</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23952/jnva.8.2024.6.07" target="_blank" >10.23952/jnva.8.2024.6.07</a>
Alternative languages
Result language
angličtina
Original language name
Sparse least squares K-SVCR multi-class classification
Original language description
This paper introduces a novel model, the sparse least squares K-class support vector classificationregression with adaptive p-norm (PLSTKSVC), to tackle challenges in multi-class classification. Leveraging a "1-versus-1-versus-rest" structure, PLSTKSVC dynamically adjusts the parameter p based on the data, enabling an adaptive learning framework. By incorporating cardinality-constrained optimization, the model seamlessly integrates feature selection and classification. Although the p-norm is non-convex for 0 < p<1, PLSTKSVC efficiently addresses the associated optimization via linear systems of equations. PLSTKSVC offers several advantages, including simultaneous feature selection and classification, robust theoretical foundations, algorithmic efficiency, and strong empirical validation. The model?s theoretical contributions include lower bounds on non-zero solution entries and upper bounds on the optimal solution norm. Experimental results on multi-class classification datasets highlight the superior performance of PLSTKSVC, establishing it as a significant advancement in machine learning.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Nonlinear and Variational Analysis
ISSN
2560-6921
e-ISSN
2560-6778
Volume of the periodical
8
Issue of the periodical within the volume
6
Country of publishing house
CA - CANADA
Number of pages
19
Pages from-to
953-971
UT code for WoS article
001374806800007
EID of the result in the Scopus database
2-s2.0-85208017159