All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Bounds for Sparse Solutions of K-SVCR Multi-class Classification Model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F23%3A43897570" target="_blank" >RIV/44555601:13440/23:43897570 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-24866-5_11#Abs1" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-24866-5_11#Abs1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-24866-5_11" target="_blank" >10.1007/978-3-031-24866-5_11</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Bounds for Sparse Solutions of K-SVCR Multi-class Classification Model

  • Original language description

    The support vector classification-regression machine for k-class classification (K-SVCR) is a novel multi-class classification approach based on the ?1-versus-1-versus-rest? structure. In this work, we suggested an efficient model by proposing the p-norm (0&lt;p&lt;1) instead of the 2-norm for the regularization term in the objective function of K-SVCR that can be used for feature selection. We derived lower bounds for the absolute value of nonzero entries in every local optimal solution of the p-norm based model. Also, we provided upper bounds for the number of nonzero components of the optimal solutions. We explored the link between solution sparsity, regularization parameters, and the p-choice.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    LION 2022: Learning and Intelligent Optimization

  • ISBN

    978-3-031-24865-8

  • ISSN

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    136-144

  • Publisher name

    Springer, Cham

  • Place of publication

    Switzerland AG

  • Event location

    Milos Island

  • Event date

    Jun 5, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article