Rainfall-runoff time series modeling with artificial neural network usage
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13520%2F10%3A00006084" target="_blank" >RIV/44555601:13520/10:00006084 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Rainfall-runoff time series modeling with artificial neural network usage
Original language description
The most required forecast is a six hours ahead estimation of runoff volume. The source data consist of several hourly data time series, like runoff, rainfall and API. We compared linear regression, last value estimation, multilayer perceptron and evolved multilayer perceptron.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
DA - Hydrology and limnology
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Hydrological responses of small basins to a changing environment
ISBN
978-3-900962-90-6
ISSN
—
e-ISSN
—
Number of pages
3
Pages from-to
—
Publisher name
BOKU Vídeň
Place of publication
Rakousko
Event location
Seggau, Rakousko
Event date
Jan 1, 2010
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—