All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A novel generator design utilised for conventional ejector refrigeration systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F21%3A00009207" target="_blank" >RIV/46747885:24210/21:00009207 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1073/14/22/7705/htm" target="_blank" >https://www.mdpi.com/1996-1073/14/22/7705/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/en14227705" target="_blank" >10.3390/en14227705</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A novel generator design utilised for conventional ejector refrigeration systems

  • Original language description

    Ejector refrigeration systems are rapidly evolving and are poised to become one of the most preferred cooling systems in the near future. CO2 transcritical refrigeration systems have inherently high working pressures and discharge temperatures, providing a large volumetric heating capacity. In the current research, the heat ejected from the CO2 gas cooler was proposed as a driving heating source for the compression ejector system, representing the energy supply for the generator in a combined cycle. The local design approach was investigated for the combined plate-type heat exchanger (PHE) via Matlab code integrated with the NIST real gas database. HFO refrigerants (1234ze(E) and 1234yf) were selected to serve as the cold fluid on the generator flowing through three different phases: subcooled liquid, a two-phase mixture, and superheated vapour. The study examines the following: the effectiveness, the heat transfer coefficients, and the pressure drop of the PHE working fluids under variable hot stream pressures, cold stream flow fluxes, and superheated temperatures. The integration revealed that the cold fluid mixture phase dominates the heat transfer coefficients and the pressure drop of the heat exchanger. By increasing the hot stream inlet pressure from 9 MPa to 12 MPa, the cold stream two-phase convection coefficient can be enhanced by 50% and 200% for R1234yf and R1234ze(E), respectively. Conversely, the cold stream two-phase convection coefficient dropped by 17% and 37% for R1234yf and R1234ze(E), respectively. The overall result supports utilising the ejected heat from the CO2 transcritical system, especially at high CO2 inlet pressures and low cold channel flow fluxes. Moreover, R1234ze(E) could be a more suitable working fluid because it possesses a lower pressure drop and bond number.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Energies

  • ISSN

    1996-1073

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    7705

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    22

  • Pages from-to

  • UT code for WoS article

    000724980300001

  • EID of the result in the Scopus database

    2-s2.0-85119694821