All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Heat Transfer Analysis between R744 and HFOs inside Plate Heat Exchangers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F22%3A00010188" target="_blank" >RIV/46747885:24210/22:00010188 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1099-4300/24/8/1150" target="_blank" >https://www.mdpi.com/1099-4300/24/8/1150</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/e24081150" target="_blank" >10.3390/e24081150</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Heat Transfer Analysis between R744 and HFOs inside Plate Heat Exchangers

  • Original language description

    Plate heat exchangers (PHE) are used for a wide range of applications, thus utilizing new and unique heat sources is of crucial importance. R744 has a low critical temperature, which makes its thermophysical properties variation smoother than other supercritical fluids. As a result, it can be used as a reliable hot stream for PHE, particularly at high temperatures. The local design approach was constructed via MATLAB integrated with the NIST database for real gases. Recently produced HFOs (R1234yf, R1234ze(E), R1234ze(Z), and R1233zd(E)) were utilized as cold fluids flowing through three phases: Liquid-phase, two-phase, and gas-phase. A two-step study was performed to examine the following parameters: Heat transfer coefficients, pressure drop, and effectiveness. In the first step, these parameters were analyzed with a variable number of plates to determine a suitable number for the next step. Then, the effects of hot stream pressure and cold stream superheating difference were investigated with variable cold channel mass fluxes. For the first step, the results showed insignificant differences in the investigated parameters for the number of plates higher than 40. Meanwhile, the second step showed that increasing the hot stream pressure from 10 to 12 MPa enhanced the two-phase convection coefficients by 17%, 23%, 75%, and 50% for R1234yf, R1234ze(E), R1234ze(Z), and R1233zd(E), respectively. In contrast, increasing the cold stream superheating temperature difference from 5 K to 20 reduced the two-phase convection coefficients by 14%, 16%, 53%, and 26% for R1234yf, R1234ze(E), R1234ze(Z), and R1233zd(E), respectively. Therefore, the R744 is suitable for PHE as a driving heat source, particularly at higher R744 inlet pressure and low cold stream superheating difference.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.

Data specific for result type

  • Name of the periodical

    ENTROPY

  • ISSN

    1099-4300

  • e-ISSN

  • Volume of the periodical

    24

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

  • UT code for WoS article

    000847153400001

  • EID of the result in the Scopus database

    2-s2.0-85137556184