All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Influence of Incorporating Recycled Windshield Glass, PVB-Foil, and Rubber Granulates on the Properties of Geopolymer Composites and Concretes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F23%3A00011158" target="_blank" >RIV/46747885:24210/23:00011158 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4360/15/9/2122" target="_blank" >https://www.mdpi.com/2073-4360/15/9/2122</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym15092122" target="_blank" >10.3390/polym15092122</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Influence of Incorporating Recycled Windshield Glass, PVB-Foil, and Rubber Granulates on the Properties of Geopolymer Composites and Concretes

  • Original language description

    Waste materials from the automotive industries were re-used as aggregates into metakaolin-based geopolymer (GP), geopolymer mortar (GM), and Bauhaus B20-based concrete composite (C). Specifically, the study evaluates the ability of windshield silica glass (W), PVB-Foils (P), and rubber granulates (G) to impact the mechanical and thermal properties. The addition of the recovered materials into the experimental geopolymers outperformed the commercially available B20. The flexural strength reached values of 7.37 ± 0.51 MPa in concrete with silica glass, 4.06 ± 0.32 in geopolymer malt with PVB-Foils, and 6.99 ± 0.82 MPa in pure geopolymer with rubber granulates; whereas the highest compressive strengths (бc) were obtained by the addition of PVB-Foils in pure geopolymer, geopolymer malt, and concrete (43.16 ± 0.31 MPa, 46.22 ± 2.06 MPa, and 27.24 ± 1.28 MPa, respectively). As well PVB-Foils were able to increase the impact strength (бi) at 5.15 ± 0.28 J/cm2 in pure geopolymer, 5.48 ± 0.41 J/cm2 in geopolymer malt, and 3.19 ± 0.14 J/cm2 in concrete, furnishing a significant improvement over the reference materials. Moreover, a correlation between density and thermal conductivity (λ) was also obtained to provide the suitability of these materials in applications such as insulation or energy storage. These findings serve as a basis for further research on the use of waste materials in the creation of new, environmentally friendly composites.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

  • Volume of the periodical

    15

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000987574400001

  • EID of the result in the Scopus database

    2-s2.0-85159309716