Dynamic Compressive Behavior of an Anisotropic Magnetorheological Elastomeric Composite
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24210%2F24%3A00012486" target="_blank" >RIV/46747885:24210/24:00012486 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-70251-8_13" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-70251-8_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70251-8" target="_blank" >10.1007/978-3-031-70251-8</a>
Alternative languages
Result language
angličtina
Original language name
Dynamic Compressive Behavior of an Anisotropic Magnetorheological Elastomeric Composite
Original language description
The dynamic mechanical behavior of an anisotropic magnetorheological elastomeric composite (aMEC) made of silicone rubber and micro-sized carbonyl iron particles (CIPs) was investigated via cyclic compression tests. The dependence of aMEC dynamic moduli on frequencies (1–50 Hz) at various pre-strains (5–20%), strain amplitudes (0.1–3%), magnetic field intensities (0–0.296 T), and temperatures (RT-60 ℃) were studied experimentally. Experimental results showed that the storage modulus of aMEC was increased with increasing frequency to 50 Hz. The loss modulus was enhanced with rising frequency to about 20 Hz, then changed irregularly. Besides, the storage and loss moduli rose with increasing pre-strain and magnetic field intensity but reduced with rising strain amplitude and temperature. Moreover, the change of aMEC dynamic moduli with frequency at various pre-strains, strain amplitudes, magnetic field intensities, and temperatures was numerically examined using a fractional derivative hybrid Maxwell and Kelvin-Voigt viscoelastic model. The investigated model was fitted very well to the storage modulus of aMEC. The present model parameters were identified by fitting simultaneously the storage and loss moduli to measured data of aMEC. In general, the fractional hybrid Maxwell and Kelvin-Voigt model can be applied to simulate the dynamic compressive behavior of aMEC.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20302 - Applied mechanics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000843" target="_blank" >EF16_019/0000843: Hybrid Materials for Hierarchical Structure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.
Data specific for result type
Article name in the collection
Advances in Mechanism Design IV
ISBN
978-3-031-70251-8
ISSN
2211-0984
e-ISSN
—
Number of pages
10
Pages from-to
123-132
Publisher name
Springer Cham
Place of publication
Berlin
Event location
Liberec
Event date
Jan 1, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—