All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Speech Activity Detection in Online Broadcast Transcription Using Deep Neural Networks and Weighted Finite State Transducers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00004814" target="_blank" >RIV/46747885:24220/17:00004814 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ICASSP.2017.7953200" target="_blank" >http://dx.doi.org/10.1109/ICASSP.2017.7953200</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICASSP.2017.7953200" target="_blank" >10.1109/ICASSP.2017.7953200</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Speech Activity Detection in Online Broadcast Transcription Using Deep Neural Networks and Weighted Finite State Transducers

  • Original language description

    In this paper, a new approach to online Speech Activity Detection (SAD) is proposed. This approach is designed for the use in a system that carries out 24/7 transcription of radio/TV broadcasts containing a large amount of non-speech segments, such as advertisements or music. To improve the robustness of detection, we adopt Deep Neural Networks (DNNs) trained on artificially created mixtures of speech and non-speech signals at desired levels of signal-to-noise ratio (SNR). An integral part of our approach is an online decoder based on Weighted Finite State Transducers (WFSTs); this decoder smooths the output from DNN. The employed transduction model is context-based, i.e., both speech and non-speech events are modeled using sequences of states. The presented experimental results show that our approach yields state-of-the-art results on standardized QUT-NOISE-TIMIT data set for SAD and, at the same time, it is capable of a) operating with low latency and b) reducing the computational demands and error rate of the target transcription system.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    <a href="/en/project/TA04010199" target="_blank" >TA04010199: MULTILINMEDIA - Multilingual Multimedia Monitoring and Analyzing Platform</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2017 IEEE IICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedingsnternational Conference on Acoustics, Speech, and Signal Processing, ICASSP 2017

  • ISBN

    978-1-5090-4117-6

  • ISSN

    1520-6149

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    5460-5464

  • Publisher name

    Institute of Electrical and Electronics Engineers Inc.

  • Place of publication

    USA

  • Event location

    New Orleans, USA

  • Event date

    Jan 1, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000414286205124