All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Investigation into the Use of WFSTs and DNNs for Speech Activity Detection in Broadcast Data Transcription

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00004824" target="_blank" >RIV/46747885:24220/17:00004824 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-67876-4_16" target="_blank" >http://dx.doi.org/10.1007/978-3-319-67876-4_16</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-67876-4_16" target="_blank" >10.1007/978-3-319-67876-4_16</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Investigation into the Use of WFSTs and DNNs for Speech Activity Detection in Broadcast Data Transcription

  • Original language description

    This paper deals with the task of Speech Activity Detection (SAD). The main goal is to investigate a new SAD approach suitable for offline as well as online transcription of various radio/TV broadcasts containing a large amount of non-speech segments. For this purpose, Deep Neural Networks (DNNs) with various hyper-parameters are adopted and evaluated. Their training is carried out using artificially created mixtures of speech and non-speech signals. Our SAD scheme also utilizes a decoder based on Weighted Finite State Transducers (WFSTs). The decoder smooths the output from DNN, can operate online and utilizes context-based transduction model, where both speech and non-speech events are modeled using sequences of states. The final evaluation of the developed approach is carried out on standardized QUT-NOISE-TIMIT data set for SAD and in a real broadcast transcription system. The obtained results show that our SAD module yields state-of-the-art results on QUT-NOISE-TIMIT, and, at the same time, it is capable of (a) operating with low latency and (b) reducing the computational demands and error rate of the transcription system.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    <a href="/en/project/TA04010199" target="_blank" >TA04010199: MULTILINMEDIA - Multilingual Multimedia Monitoring and Analyzing Platform</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Communications in Computer and Information Science

  • ISBN

    978-331967875-7

  • ISSN

    1865-0929

  • e-ISSN

  • Number of pages

    18

  • Pages from-to

    341-358

  • Publisher name

    Springer Verlag

  • Place of publication

    Spolková republika Německo

  • Event location

    Lisbon; Portugal

  • Event date

    Jan 1, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article