All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Impact of Inaccurate Phonetic Annotations on Speech Recognition Performance

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F17%3A00004818" target="_blank" >RIV/46747885:24220/17:00004818 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-64206-2_45" target="_blank" >http://dx.doi.org/10.1007/978-3-319-64206-2_45</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-64206-2_45" target="_blank" >10.1007/978-3-319-64206-2_45</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Impact of Inaccurate Phonetic Annotations on Speech Recognition Performance

  • Original language description

    This paper focuses on impact of phonetic inaccuracies of acoustic training data on performance of automatic speech recognition system. This is especially important if the training data is created in automated way. In this case, the data often contains errors in a form of wrong phonetic transcriptions. A series of experiments simulating various common errors in phonetic transcriptions based on parts of GlobalPhone data set (for Croatian, Czech and Russian) is conducted. These experiments show the influence of various errors on different languages and acoustic models (Gaussian mixture models, deep neural networks). The impact of errors is also shown for real data obtained by our automated ASR creation process for Belarusian. The results show that the best performance is achieved by using the most accurate data; however, certain amount of errors (up to 5%) does have relatively small impact on speech recognition accuracy

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    <a href="/en/project/TA04010199" target="_blank" >TA04010199: MULTILINMEDIA - Multilingual Multimedia Monitoring and Analyzing Platform</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

  • ISBN

    9783319642055

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    402-410

  • Publisher name

    Springer Verlag

  • Place of publication

    Německo

  • Event location

    Praha, Česká Republika

  • Event date

    Jan 1, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article