The Influence of Errors in Phonetic Annotations on Performance of Speech Recognition System
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F18%3A00006129" target="_blank" >RIV/46747885:24220/18:00006129 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-030-00794-2_45" target="_blank" >http://dx.doi.org/10.1007/978-3-030-00794-2_45</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-00794-2_45" target="_blank" >10.1007/978-3-030-00794-2_45</a>
Alternative languages
Result language
angličtina
Original language name
The Influence of Errors in Phonetic Annotations on Performance of Speech Recognition System
Original language description
This paper deals with errors in acoustic training data and the influence on speech recognition performance. The training data can be prepared manually, automatically or by combination of these two. In all cases, some mislabeled phonemes can appear in phonetic annotations. We conducted series of experiments which simulate some common errors. The experiments deal with various amount of changes in phonetic annotations such as different types of changes in voicing of obstruents, random substitution of consonants or vowels and random deleting of phonemes. All experiments were done for Czech language using GlobalPhone speech data set and both Gaussian mixture models and deep neural networks were used for acoustic modeling. The results show that some amount of such errors in training data does not influence speech recognition accuracy. The accuracy is significantly influenced only by large amount of errors (more than 50%)
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20206 - Computer hardware and architecture
Result continuities
Project
<a href="/en/project/TH03010018" target="_blank" >TH03010018: DeepSpot - Multilingual technology for spotting and instant alerting</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - 21st International Conference on Text, Speech, and Dialogue, TSD 2018
ISBN
978-303000793-5
ISSN
0302-9743
e-ISSN
—
Number of pages
9
Pages from-to
419-427
Publisher name
Springer Verlag
Place of publication
—
Event location
Brno, Czech republic
Event date
Jan 1, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—