Independent Vector Analysis Exploiting Pre-Learned Banks of Relative Transfer Functions for Assumed Target’s Positions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F18%3A00006131" target="_blank" >RIV/46747885:24220/18:00006131 - isvavai.cz</a>
Result on the web
<a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2018/05/LVA2018SIVA.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2018/05/LVA2018SIVA.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-93764-9_26" target="_blank" >10.1007/978-3-319-93764-9_26</a>
Alternative languages
Result language
angličtina
Original language name
Independent Vector Analysis Exploiting Pre-Learned Banks of Relative Transfer Functions for Assumed Target’s Positions
Original language description
On-line frequency-domain blind separation of audio sources performed through Independent Vector Analysis (IVA) suffers from the problem of determining the order of the separated outputs. In this work,we apply a supervised IVA based on pilot components obtained using a bank of Relative Transfer Functions (RTF). The bank is assumed to be available for potential positions of a target speaker within a confined area. In every frame, the most suitable RTF is selected from the bank based on a criterion. The pilot components are obtained as pre-separated target and interference, respectively, through the Minimum-Power Distortionless Beamforming and Null Beamforming. The supervised IVA is tested in a real-world scenario with various levels of up-to-dateness of the bank. We show that the global permutation problem is resolved even when the bank contains only pure delay filters. The Signal-to-Interference Ratio in separated signals is mostly better than that achieved by the pre-separation, unless the bank contains very precise RTFs.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-00902S" target="_blank" >GA17-00902S: Advanded Joint Blind Source Separation Methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) - The 14th International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA 2018)
ISBN
9783319937632
ISSN
03029743
e-ISSN
—
Number of pages
10
Pages from-to
270-279
Publisher name
—
Place of publication
—
Event location
Guildford, UK
Event date
Jan 1, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—