The Covalent Tethering of Poly(ethylene glycol) to Nylon 6 Surface via N,N′-Disuccinimidyl Carbonate Conjugation: A New Approach in the Fight against Pathogenic Bacteria
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F20%3A00007823" target="_blank" >RIV/46747885:24220/20:00007823 - isvavai.cz</a>
Alternative codes found
RIV/46747885:24620/20:00007823
Result on the web
<a href="https://www.mdpi.com/2073-4360/12/10/2181" target="_blank" >https://www.mdpi.com/2073-4360/12/10/2181</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/polym12102181" target="_blank" >10.3390/polym12102181</a>
Alternative languages
Result language
angličtina
Original language name
The Covalent Tethering of Poly(ethylene glycol) to Nylon 6 Surface via N,N′-Disuccinimidyl Carbonate Conjugation: A New Approach in the Fight against Pathogenic Bacteria
Original language description
Different forms of unmodified and modified Poly(ethylene glycols) (PEGs) are widely used as antifouling and antibacterial agents for biomedical industries and Nylon 6 is one of the polymers used for biomedical textiles. Our recent study focused on an efficient approach to PEGimmobilization on a reduced Nylon 6 surface viaN,N′–disuccinimidyl carbonate (DSC) conjugation. The conversion of amide functional groups to secondary amines on the Nylon 6 polymer surface was achieved by the reducing agent borane-tetrahydrofuran (BH3–THF) complex, before binding the PEG. Various techniques, including water contact angle and free surface energy measurements, atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, were used to confirm the desired surface immobilization. Our findings indicated that PEG may be efficiently tethered to the Nylon 6 surface via DSC, having an enormous future potential for antifouling biomedical materials. The bacterial adhesion performances against S. aureus and P. aeruginosa were examined. In vitro cytocompatibility was successfully tested on pure, reduced, and PEG immobilized samples
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10404 - Polymer science
Result continuities
Project
<a href="/en/project/EF16_025%2F0007293" target="_blank" >EF16_025/0007293: Modular platform for autonomous chassis of specialized electric vehicles for freight and equipment transportation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Polymers
ISSN
2073-4360
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
10
Country of publishing house
CH - SWITZERLAND
Number of pages
15
Pages from-to
—
UT code for WoS article
000587459500001
EID of the result in the Scopus database
2-s2.0-85092430101