All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Informed FastICA: Semi-Blind Minimum Variance Distortionless Beamformer

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F24%3A00012440" target="_blank" >RIV/46747885:24220/24:00012440 - isvavai.cz</a>

  • Result on the web

    <a href="https://asap.ite.tul.cz/wp-content/uploads/sites/3/2024/07/IWAENC_2024___Blind_Minimum_Variance_Distortionless_Beamformer__The_Informed_FastICA_algorithm.pdf" target="_blank" >https://asap.ite.tul.cz/wp-content/uploads/sites/3/2024/07/IWAENC_2024___Blind_Minimum_Variance_Distortionless_Beamformer__The_Informed_FastICA_algorithm.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IWAENC61483.2024.10694166" target="_blank" >10.1109/IWAENC61483.2024.10694166</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Informed FastICA: Semi-Blind Minimum Variance Distortionless Beamformer

  • Original language description

    Non-Gaussianity-based Independent Vector Extraction leads to the famous one-unit FastICA/FastIVA algorithm when the likelihood function is optimized using an approximate Newton-Raphson algorithm under the orthogonality constraint. In this paper, we replace the constraint with the analytic form of the minimum variance distortionless beamformer (MVDR), by which a semi-blind variant of FastICA/FastIVA is obtained. The side information here is provided by a weighted covariance matrix replacing the noise covariance matrix, the estimation of which is a frequent goal of neural beamformers. The algorithm thus provides an intuitive connection between model-based blind extraction and learning-based extraction. The algorithm is tested in simulations and speaker ID-guided speaker extraction, showing fast convergence and promising performance.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10307 - Acoustics

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    The 18th International Workshop on Acoustic Signal Enhancement (IWAENC 2024)

  • ISBN

    979-835036185-8

  • ISSN

    2639-4316

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

    95-99

  • Publisher name

    IEEE, Eurasip

  • Place of publication

  • Event location

    Aalborg, Denmark

  • Event date

    Jan 1, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001337653100020