All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Resistance against Penetration of Electromagnetic Radiation for Ultra-light Cu/Ni-Coated Polyester Fibrous Materials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F20%3A00007992" target="_blank" >RIV/46747885:24410/20:00007992 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4360/12/9/2029" target="_blank" >https://www.mdpi.com/2073-4360/12/9/2029</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/POLYM12092029" target="_blank" >10.3390/POLYM12092029</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Resistance against Penetration of Electromagnetic Radiation for Ultra-light Cu/Ni-Coated Polyester Fibrous Materials

  • Original language description

    Resistance against penetration of various rays including electromagnetic waves (EM), infrared rays (IR), and ultraviolet rays (UV) has been realized by using copper (Cu)-coated fabrics. However, the corrosion of the Cu on coated fabrics influenced the shielding effectiveness of the various rays. Besides, the metal-coated fabrics have high density and are unbreathable. This work aims to solve the problem by incorporating nickel (Ni) into the Cu coating on the ultra-light polyester fibrous materials (Milife® composite nonwoven fabric-10 g/m2, abbreviation Milife) via electroless plating. The electromagnetic interference (EMI), IR test, ultraviolet protection factor (UPF), water contact angle, and air permeability of the Cu/Ni-coated Milife fabric were measured. All the samples were assumed as ultra-light and breathable by obtaining the similar fabric density (~10.57 g/m2) and large air permeability (600-1050 mm/s). The Cu/Ni deposition on the Milife fabrics only covered the fibers. The EM shielding effectiveness (SE) decreased from 26 to 20 dB, the IR reflectance (Rinfrared) decreased from 0.570 to 0.473 with increasing wNi from 0 to 19.5 wt %, while the wNi improved the UPF from 9 to 48. Besides, addition of Ni changed the Cu/Ni-coated Milife fabric from hydrophilicity to the hydrophobicity by observing WCA from 77.7° to 114°.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20503 - Textiles; including synthetic dyes, colours, fibres (nanoscale materials to be 2.10; biomaterials to be 2.9)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    POLYMERS

  • ISSN

    2073-4360

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    1

  • Pages from-to

    2029

  • UT code for WoS article

    000581291500001

  • EID of the result in the Scopus database

    2-s2.0-85091659091