All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multifunctional sandwich materials with ROTIS structure for improved thermal and electrical properties in construction application

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24410%2F24%3A00012502" target="_blank" >RIV/46747885:24410/24:00012502 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1177/15280837241271786" target="_blank" >https://doi.org/10.1177/15280837241271786</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/15280837241271786" target="_blank" >10.1177/15280837241271786</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multifunctional sandwich materials with ROTIS structure for improved thermal and electrical properties in construction application

  • Original language description

    There is still a lot of research space and market demand for lightweight, heat-insulating, and EMI-shielding construction materials. This paper develops and compares the thermal insulation, ohmic heating effect, and EMI shielding properties of a kind of multifunctional sandwich material with “ROTIS” and “FLAT” structures. The ROTIS-structured sample exhibits slightly higher thermal conductivity than the FLAT-structured sample, owing to its lower volume porosity and higher plated copper content per unit area. Since ROTIS technology allows for a significant increase in the thickness of thinner raw materials, this structure allows for an increase in the thermal insulation of thinner materials. Also, samples with ROTIS structures have a better ohmic heating effect than samples with FLAT structures. This is because the active layer has more plated copper content per unit area, while the insulation layer has less thermal resistance. Unsatisfactorily, the samples with the ROTIS structure show lower electromagnetic shielding effectiveness at 1-1.5 GHz, which is mainly due to their reduced volume porosity. In conclusion, this research develops sandwich materials with the ROTIS structure that exhibit excellent thermal insulation, electromagnetic shielding, and ohmic heating properties, making them suitable for use as building materials in demanding indoor temperatures and electromagnetic environments.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20503 - Textiles; including synthetic dyes, colours, fibres (nanoscale materials to be 2.10; biomaterials to be 2.9)

Result continuities

  • Project

    <a href="/en/project/GM21-32510M" target="_blank" >GM21-32510M: Advanced structures for thermal insulation in extreme conditions</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Industrial Textiles

  • ISSN

    1528-0837

  • e-ISSN

  • Volume of the periodical

    54

  • Issue of the periodical within the volume

    JUL

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    27

  • Pages from-to

  • UT code for WoS article

    001309519500001

  • EID of the result in the Scopus database

    2-s2.0-85213524784