Domination in bipartite graphs and in their complements.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F03%3A00000025" target="_blank" >RIV/46747885:24510/03:00000025 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Domination in bipartite graphs and in their complements.
Original language description
The domatic numbers of a graph $G$ and of its complement $bar G$ were studied by J. E. Dunbar, T. W. Haynes and M. A. Henning. They suggested four open problems. We will solve the following ones: Characterize bipartite graphs $G$ having $d(G) = d(bar G)$. Further, we will present a partial solution to the problem: Is it true that if $G$ is a graph satisfying $d(G) = d(bar G)$, then $gamma(G) = gamma(bar G)$? Finally, we prove an existence theorem concerning the total domatic number of a graph andof its complement.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2003
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czech. Math. J
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
58
Issue of the periodical within the volume
1
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
7
Pages from-to
241-247
UT code for WoS article
—
EID of the result in the Scopus database
—