Construction of optimally conditioned cubic spline wavelets on the interval
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F11%3A%230000380" target="_blank" >RIV/46747885:24510/11:#0000380 - isvavai.cz</a>
Result on the web
<a href="http://www.springerlink.com/content/j55w82260p62h113/" target="_blank" >http://www.springerlink.com/content/j55w82260p62h113/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10444-010-9152-5" target="_blank" >10.1007/s10444-010-9152-5</a>
Alternative languages
Result language
angličtina
Original language name
Construction of optimally conditioned cubic spline wavelets on the interval
Original language description
The paper is concerned with a construction of new spline-wavelet bases on the interval. The resulting bases generate multiresolution analyses on the unit interval with the desired number of vanishing wavelet moments for primal and dual wavelets. Both primal and dual wavelets have compact support. Inner wavelets are translated and dilated versions of well-known wavelets designed by Cohen, Daubechies, and Feauveau. Our objective is to construct interval spline-wavelet bases with the condition number whichis close to the condition number of the spline wavelet bases on the real line, especially in the case of the cubic spline wavelets. We show that the constructed set of functions is indeed a Riesz basis for the space L (2) ([0, 1]) and for the Sobolev space H (s) ([0, 1]) for a certain range of s. Then we adapt the primal bases to the homogeneous Dirichlet boundary conditions of the first order and the dual bases to the complementary boundary conditions. Quantitative properties of the co
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ADVANCES IN COMPUTATIONAL MATHEMATICS
ISSN
1019-7168
e-ISSN
—
Volume of the periodical
34
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
34
Pages from-to
219-252
UT code for WoS article
286189000005
EID of the result in the Scopus database
—