Wavelets of Hermite cubic splines on the interval
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F12%3A%230000826" target="_blank" >RIV/46747885:24510/12:#0000826 - isvavai.cz</a>
Result on the web
<a href="http://proceedings.aip.org/resource/2/apcpcs/1497/1/138_1?isAuthorized=no" target="_blank" >http://proceedings.aip.org/resource/2/apcpcs/1497/1/138_1?isAuthorized=no</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4766778" target="_blank" >10.1063/1.4766778</a>
Alternative languages
Result language
angličtina
Original language name
Wavelets of Hermite cubic splines on the interval
Original language description
In 2000, W. Dahmen et al. proposed a construction of biorthogonal multi-wavelets adapted to the interval [0,1] on the basis of Hermite cubic splines. They started with Hermite cubic splines as the primal scaling bases on R. Then, they constructed dual scaling bases on R consisting of continuous functions with small supports and with polynomial exactness of order 2. Consequently, they derived primal and dual boundary scaling functions retaining the polynomial exactness. This ensures vanishing moments ofthe corresponding wavelets. Finally, they applied the method of stable completions to construct the corresponding primal and dual multi-wavelets on the interval. In recent years, several more simple constructions of wavelet bases based on Hermite cubic splines were proposed. In this contribution, we shortly review these constructions, use these wavelets to solve numerically differential equations, and compare their performance with a hierarchical basis in finite element methods.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12)
ISBN
978-0-7354-1111-1
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
138-143
Publisher name
AMER INST PHYSICS
Place of publication
MELVILLE, NY 11747-4501 USA
Event location
Sozopol, BULGARIA
Event date
Dec 6, 2012
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
312260000019