Adaptive Solution of the Biharmonic Problem with Shortly Supported Cubic Spline-Wavelets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F12%3A%230000818" target="_blank" >RIV/46747885:24510/12:#0000818 - isvavai.cz</a>
Result on the web
<a href="http://proceedings.aip.org/" target="_blank" >http://proceedings.aip.org/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Adaptive Solution of the Biharmonic Problem with Shortly Supported Cubic Spline-Wavelets
Original language description
In our contribution, we design a cubic spline-wavelet basis on the interval. The basis functions have small support and wavelets have vanishing moments. We show that stiffness matrices arising from discretization of the two-dimensional biharmonic problemusing a constructed wavelet basis have uniformly bounded condition numbers and these condition numbers are very small. We compare quantitative behavior of adaptive wavelet method with a constructed basis and other cubic spline-wavelet bases, and show the superiority of our construction.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings
ISBN
978-0-7354-1091-6
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
1379-1382
Publisher name
American Institute of Physics
Place of publication
New York
Event location
Kos, Greece
Event date
Jan 1, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
310698100332