Wavelet basis of cubic splines on the hypercube satisfying homogeneous boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F15%3A%230001251" target="_blank" >RIV/46747885:24510/15:#0001251 - isvavai.cz</a>
Result on the web
<a href="http://www.worldscientific.com/doi/abs/10.1142/S0219691315500149" target="_blank" >http://www.worldscientific.com/doi/abs/10.1142/S0219691315500149</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219691315500149" target="_blank" >10.1142/S0219691315500149</a>
Alternative languages
Result language
angličtina
Original language name
Wavelet basis of cubic splines on the hypercube satisfying homogeneous boundary conditions
Original language description
In this paper, we propose a construction of a new cubic spline-wavelet basis on the hypercube satisfying homogeneous Dirichlet boundary conditions. Wavelets have two vanishing moments. Stiffness matrices arising from discretization of elliptic problems using a constructed wavelet basis have uniformly bounded condition numbers and we show that these condition numbers are small. We present quantitative properties of the constructed basis and we provide a numerical example to show the efficiency of the Galerkin method using the constructed basis.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Wavelets, Multiresolution and Information Processing
ISSN
1793-690X
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
3
Country of publishing house
SG - SINGAPORE
Number of pages
21
Pages from-to
—
UT code for WoS article
000355330800002
EID of the result in the Scopus database
—