All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Wavelet basis of cubic splines on the hypercube satisfying homogeneous boundary conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F15%3A%230001251" target="_blank" >RIV/46747885:24510/15:#0001251 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.worldscientific.com/doi/abs/10.1142/S0219691315500149" target="_blank" >http://www.worldscientific.com/doi/abs/10.1142/S0219691315500149</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0219691315500149" target="_blank" >10.1142/S0219691315500149</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Wavelet basis of cubic splines on the hypercube satisfying homogeneous boundary conditions

  • Original language description

    In this paper, we propose a construction of a new cubic spline-wavelet basis on the hypercube satisfying homogeneous Dirichlet boundary conditions. Wavelets have two vanishing moments. Stiffness matrices arising from discretization of elliptic problems using a constructed wavelet basis have uniformly bounded condition numbers and we show that these condition numbers are small. We present quantitative properties of the constructed basis and we provide a numerical example to show the efficiency of the Galerkin method using the constructed basis.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Wavelets, Multiresolution and Information Processing

  • ISSN

    1793-690X

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    21

  • Pages from-to

  • UT code for WoS article

    000355330800002

  • EID of the result in the Scopus database