Quadratic Spline Wavelets with Short Support for Fourth-Order Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F14%3A%230001120" target="_blank" >RIV/46747885:24510/14:#0001120 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs00025-014-0402-6" target="_blank" >http://link.springer.com/article/10.1007%2Fs00025-014-0402-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00025-014-0402-6" target="_blank" >10.1007/s00025-014-0402-6</a>
Alternative languages
Result language
angličtina
Original language name
Quadratic Spline Wavelets with Short Support for Fourth-Order Problems
Original language description
In the paper, we propose constructions of new quadratic spline-wavelet bases on the interval and the unit square satisfying homogeneous Dirichlet boundary conditions of the second order. The basis functions have small supports and wavelets have one vanishing moment. We show that stiffness matrices arising from discretization of the biharmonic problem using a constructed wavelet basis have uniformly bounded condition numbers and these condition numbers are very small.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE.2.3.20.0086" target="_blank" >EE.2.3.20.0086: Strengthening international cooperation of the KLIMATEXT research team</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
RESULTS IN MATHEMATICS
ISSN
1422-6383
e-ISSN
—
Volume of the periodical
66
Issue of the periodical within the volume
3-4
Country of publishing house
CH - SWITZERLAND
Number of pages
16
Pages from-to
525-540
UT code for WoS article
000344346500015
EID of the result in the Scopus database
—