A note on wavelet methods for singularly perturbed problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24510%2F14%3A%230001137" target="_blank" >RIV/46747885:24510/14:#0001137 - isvavai.cz</a>
Result on the web
<a href="http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4902466" target="_blank" >http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4902466</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A note on wavelet methods for singularly perturbed problems
Original language description
Many problems in science and technology can be modeled by boundary value problems for singularly perturbed differential equations. In the modeling of these processes, one can observe boundary and interior layers whose width can be arbitrary small. To solve such types of problems a lot of methods were proposed. In this contribution, we focus on methods based on wavelets. Using wavelet discretization of singularly perturbed two-point boundary value problems, one can observe that condition numbers of arising stiffness matrices are growing with decreasing parameter epsilon when an unsymmetric part starts to dominate. We propose here a new simple diagonal preconditioning which significantly improves condition numbers of stiffness matrices for small value ofparameter epsilon. Numerical examples are given.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'14), AIP Conference Proceedings, Vol. 1631
ISBN
9780735412705
ISSN
0094-243X
e-ISSN
—
Number of pages
3
Pages from-to
111-113
Publisher name
American Institute of Physics
Place of publication
MELVILLE, NY 11747-4501 USA
Event location
Sozopol
Event date
Jan 1, 2014
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
000346058100017